Metal ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-1 alpha protein.

نویسندگان

  • Monika Kaczmarek
  • Raul E Cachau
  • Igor A Topol
  • Kazimierz S Kasprzak
  • Andy Ghio
  • Konstantin Salnikow
چکیده

The exposure of cells to several metal ions stabilizes HIF-1 alpha protein. However, the molecular mechanisms are not completely understood. They may involve inhibition of hydroxylation by either substitution of iron by metal ions or by iron oxidation in the hydroxylases. Here we provide evidence supporting the latter mechanism. We show that HIF-1 alpha stabilization in human lung epithelial cells occurred following exposure to various metal and metalloid ions, including those that cannot substitute for iron in the hydroxylases. In each case addition of the reducing agent ascorbic acid (AA)* abolished HIF-1 alpha protein stabilization. To better understand the role of iron oxidation in hydroxylase inhibition and to define the role of AA in the enzyme recovery we applied molecular modeling techniques. Our results indicate that the energy required for iron substitution by Ni(II) in the enzyme is high and unlikely to be achieved in a biological system. Additionally, computer modeling allowed us to identify a tridentate coordination of AA with the enzyme-bound iron, which explains the specific demand for AA as the iron reductant. Thus, the stabilization of HIF-1 alpha by numerous metal ions that cannot substitute for iron in the enzyme, the alleviation of this effect by AA, and our computer modeling data support the hypothesis of iron oxidation in the hydroxylases following exposure to metal ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway.

Hypoxia-inducible transcription factor (HIF) is regulated by two oxygen-dependent events that are catalyzed by the HIF prolyl 4-hydroxylases (HIF-P4Hs) and HIF asparaginyl hydroxylase (FIH). We have purified the three recombinant human HIF-P4Hs to near homogeneity and characterized their catalytic properties and inhibition and those of FIH. The specific activities of the HIF-P4Hs were at least ...

متن کامل

Dual-action inhibitors of HIF prolyl hydroxylases that induce binding of a second iron ion.

Inhibition of the hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD or EGLN enzymes) is of interest for the treatment of anemia and ischemia-related diseases. Most PHD inhibitors work by binding to the single ferrous ion and competing with 2-oxoglutarate (2OG) co-substrate for binding at the PHD active site. Non-specific iron chelators also inhibit the PHDs, both in vitro and in cells. We...

متن کامل

Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation.

Mammalian cells detect decreases in oxygen concentrations to activate a variety of responses that help cells adapt to low oxygen levels (hypoxia). One such response is stabilization of the protein HIF-1 alpha, a component of the transcription factor HIF-1. Here we show that a small interfering RNA (siRNA) against the Rieske iron-sulfur protein of mitochondrial complex III prevents the hypoxic s...

متن کامل

A new HIF-1 alpha variant induced by zinc ion suppresses HIF-1-mediated hypoxic responses.

The expressions of hypoxia-inducible genes are upregulated by hypoxia-inducible factor 1 (HIF-1), which is a heterodimer of HIF-1alpha and HIF-1beta/ARNT (aryl hydrocarbon receptor nuclear transporter). Under hypoxic conditions, HIF-1alpha becomes stabilized and both HIF-1alpha and ARNT are translocated into the nucleus and codimerized, binding to the HIF-1 consensus sequence and transactivatin...

متن کامل

HIF-1: the knowns and unknowns of hypoxia sensing.

Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator that functions as a master regulator of cellular and systemic oxygen homeostasis. It consists of two constitutively produced subunits: HIF-1alpha and HIF-1beta. Under normoxic conditions HIF-1alpha undergoes hydroxylation at specific prolyl residues which leads to an immediate ubiquitination and subsequent proteasomal degradation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 107 2  شماره 

صفحات  -

تاریخ انتشار 2009